Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(8): 2927-2932, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37578472

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) is sensitive to a variety of biological factors, and dysregulated OXPHOS is observed during the development of numerous pathological conditions. ATP production via OXPHOS is intrinsically dependent on the availability of acetyl-coenzyme A (CoA), which can enter the tricarboxylic acid (TCA) cycle to drive the oxidative pathway. Acetyl-l-carnitine (ALCAR) is an interchangeable endogenous source of acetyl-CoA, and therefore, ALCAR-derived probes are uniquely positioned for the assessment of OXPHOS. In this report, we develop hyperpolarized (HP) [1-13C]ALCAR as a noninvasive probe to investigate cardiac TCA cycle activity in vivo. We initially synthesized the isotopically labeled substrate and demonstrated that the 13C nucleus maintained a suitable T1 value (50.1 ± 0.8 s at 3 T) and polarization levels (21.3 ± 5.3%) to execute in vivo metabolic measurements. HP [1-13C]ALCAR was employed for cardiac analyses of OXPHOS in rats under fed and fasted conditions. [5-13C]Glutamate was successfully detected, and the metabolite was used to analyze the TCA cycle activity in both nutritional states. These assessments were compared to analogous experiments with the HP [1-13C]pyruvate. Our report represents the first study to demonstrate that HP methods using [1-13C]ALCAR enable direct analyses of mitochondrial function and TCA cycle activity, which are fundamental to cardiac cell homeostasis.


Assuntos
Acetilcarnitina , Ciclo do Ácido Cítrico , Ratos , Animais , Acetilcarnitina/metabolismo , Oxirredução , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...